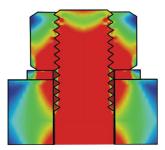


Thread Lubricant Selection

Why Use Chesterton Thread Paste?

- Preserves bolt/stud integrity (controlled coefficient of friction [Kf-nut] at contact points)
- · Accurate bolt/stud tension
- · Insures correct flange sealing force
- · Prevents thread galling
- Inhibits intergranular corrosion
- · Safe operation of equipment
- · Reduces disassembly time

Excess stress (a) without proper lubrication causes galling (b). This concentrates force and leads to thread fracture/seizure (c).


Chesterton Thread Lubricant Selection Guide

Product	Kf	Kf Max Temp Water		рН	0il	Steam	Alloy
725	0.18	1425°C (2600°F)	В	В	В	В	Α
772	0.16	1425°C (2600°F)	В	В	В	В	Α
783	0.16	900°C (1650°F)	Α	Α	В	Α	В
785	0.17	1204°C (2200°F)	В	В	В	Α	В
785FG	0.20	1204°C (2200°F)	В	Α	В	В	Α
787	0.16	540°C (1000°F)	В	C	Α	В	C
900	0.16	260°C (500°F)	В	В	Α	A	A

Key: A=Best, B=Good, C=Fair

Areas of High Stress

Areas of high stress, shown in red, require use of thread lubricants.

Copyright © 2014 László Molnár et al.

Bolting Installation Procedure

Flange and Bolt Installation

All components must be correct to achieve a seal. The most common cause of leaky gasketed joints is improper installation.

- Clean the flange faces and check for scars; the faces must be clean and free of defects (burrs, pits, dents, etc.).
- Inspect all bolts and nuts for damaged or corroded threads. Remove burrs by "chasing" threads or wire brush to remove rust. Replace if components are heavily damaged.
- Lubricate, the full length of threads, the surface of the nut face adjacent to the flange or washer. Hardened washers are recommended.
 Assemble per diagram to the right.
- 4. Install the new gasket and be sure gasket is properly centered. DO NOT REUSE old gasket. Use new gasket/gaskets only.
- Check flange alignment. Flange faces must be parallel within 1/16" per foot of diameter, and flange bolt holes must be aligned to within 1/8" maximum offset.
- Adjust the position of the nuts to insure that 2-3 threads are visible above the top of the nut.

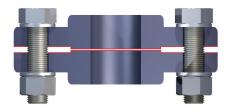
Recommended Tightening Procedures

Up to 8 Bolts-Use 4-Pass Method

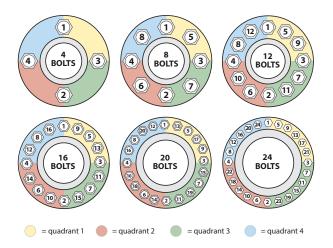
Pass 1: Set the torque wrench to the 30% torque value and apply the torque wrench in the crisscross pattern for that particular flange until all bolts have been tightened once.

 $\textbf{Pass 2:} \ \text{Set the torque wrench to the } 60\% \ torque \ value \ and \ repeat \ step \ 1.$

Pass 3: Set the torque wrench to the 100% torque value and repeat the crisscross pattern a 3rd time.


Pass 4: Check all bolts at 100% torque with a circular pattern.

12 Bolts or More- Use 5-Pass Method

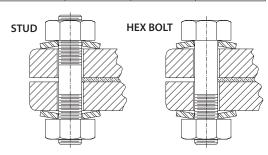

Pass 1-3: Set the torque wrench to 20%, 40%, 80% of final torque value and apply torque in a crisscross pattern. Repeat until bolts have been successively tightened.

Pass 4: Set the torque wrench to 100% torque value and repeat crisscross pattern for a 4th time.

Pass 5: Check all bolts at 100% torque with a circular pattern.

Bolt Tightening Sequence: Crisscross pattern: divide the flange into 4 quadrants. Over 40 bolts: tighten two adjacent bolts at the same time.

Hardware Selection


Useful Service Temperature Design Limits

Grade	Specs	Material	Minimum Heat Treat Temp	Low Temp Limit*	High Temp Limit*
5	SAE J429	Medium Carbon Steel	425°C (800°F)	-45°C (-50°F)	232°C (450°F)
7	SAE J429	Medium Carbon Steel	425°C (800°F)	-45°C (-50°F)	232°C (450°F)
8	SAE J429	Medium Carbon Alloy Steel	425°C (800°F)	-45°C (-50°F)	232°C (450°F)
B5	ASTM A193	Cr-Mo Alloy Steel	590°C (1100°F)	-45°C (-50°F)	400°C (750°F)
В6	ASTM A193	Cr-Mo Alloy Steel	590°C (1100°F)	-45°C (-50°F)	400°C (750°F)
B7	ASTM A193	Cr-Mo Alloy Steel	590°C (1100°F)	-45°C (-50°F)	400°C (750°F)
B7M	ASTM A193	Cr-Mo Alloy Steel	620°C (1150°F)	-45°C (-50°F)	454°C (850°F)
B8 Class 1	ASTM A193	304 Stainless Steel	NA	-195°C (-320°F)	593°C (1100°F)
B8 Class 2	ASTM A193	304 Stainless Steel	NA	-195°C (-320°F)	593°C (1100°F)
B8M Class 1	ASTM A193	316 Stainless Steel	NA	-195°C (-320°F)	593°C (1100°F)
B16	ASTM A193	Cr-Mo-Va Alloy Steel	650°C (1200°F)	-45°C (-50°F)	480°C (900°F)

^{*}These values represent useful design limits. Use of these fastener materials close to or outside of these limits should be evaluated closely. Reference: Fastenal Company

Live Loading Selection Guide

Description	5500	55001	5505H	
Material	Stainless Steel Alloy	Inconel	Carbon Steel	
Color	Grey	Grey	Black	
Max Temp °C (°F)	302 (575)	704 (1300)	593 (1100)	
Cryogenic Capabilities	Yes	Yes	No	
Manufacturing Technique	Stamped/ Machined	Stamped/ Machined	Machined	
Size Range	3/8" to 2-3/4" (M8 to M64)	3/8" to 2-3/4" (M8 to M64)	1/2" to 3" (M16 to M72)	
Recommended Size Range	3/8" to 1-1/8" (M8 to M30)	3/8" to 2-3/4" (M8 to M64)	1-1/4" to 3" (M33 to M72)	
Arrangement	2 in parallel	2 in parallel	Single Disc	
Stress Designs	Standard	Standard	30K, 45K, 60K	

Torque Charts

Carbon/Carbon Alloy Torque Settings (FT-LBS)

Bolt Di	ameter	Grade 5	Grade 7	Grade 8
Yield St	trength	80,000	105,000	120,000
Tensile S	Strength	105,000	130,000	150,000
1/4"	M6	5.1	6.7	7.6
5/16"	M8	10.5	13.8	15.7
3/8"	-	18.6	24.4	27.9
7/16"	M10	31.2	40.9	46.8
1/2"	M12	48.3	63.4	72.5
9/16"	M14	71.3	93.6	106.9
5/8"	M16	100.0	131.3	150.0
11/16"	-	135.5	177.9	203.3
3/4"	M20	179.0	235.0	268.6
13/16"	-	230.9	303.0	346.3
7/8"	M22	291.8	382.9	437.6
15/16"	-	362.4	475.7	543.6
1"	M24	443.5	582.1	665.3
1-1/8"	M27	567.4	744.7	851.0
1-1/4"	M30	888.8	1166.6	1333.2
1-3/8"	-	1193.3	1566.2	1789.9
1-1/2"	M36	1564.8	2053.8	2347.2
1-5/8"	-	1996.8	2620.8	2995.2
1-3/4"	M42	2508.8	3292.8	3763.2
1-7/8"	-	3096.0	4063.5	4644.0
2"	M48	3776.0	4956.0	5664.0
2-1/8"	-	4556.0	5979.8	6834.0
2-1/4"	M56	5414.4	7106.4	8121.6
2-3/8"	-	6399.2	8399.0	9598.8
2-1/2"	M64	7472.0	9807.0	11208.0
2-5/8"	-	8668.8	11377.8	13003.2
2-3/4"	M72	9996.8	13120.8	14995.2
2-7/8"	-	11444.8	15021.3	17167.2
3"	M76	13017.6	17085.6	19526.4

Torque using Cf of 0.16 (783, 772, 787, 900). Add 10% for 725/785. Add 20% for 710.

Ferretic Torque Settings (FT-LBS)

Bolt Diameter		B5	B6	B7 B16	B7 B16
Yield Strength		80,000	85,000	105,000	95,000
Tensile Strength		100,000	110,000	125,000	115,000
1/4"	M6	5.1	5.4	6.7	
5/16"	M8	10.5	11.1	13.8	
3/8"	-	18.6	19.8	24.4	
7/16"	M10	31.2	33.1	40.9	
1/2"	M12	48.3	51.3	63.4	
9/16"	M14	71.3	75.7	93.6	
5/8"	M16	100.0	106.3	131.3	
11/16"	-	135.5	144.0	177.9	
3/4"	M20	179.0	190.2	235.0	
13/16"	-	230.9	245.3	303.0	
7/8"	M22	291.8	310.0	382.9	
15/16"	-	362.4	385.1	475.7	
1"	M24	443.5	471.2	582.1	
1-1/8"	M27	567.4	602.8	744.7	
1-1/4"	M30	888.8	944.4	1166.6	
1-3/8"	-	1193.3	1267.9	1566.2	
1-1/2"	M36	1564.8	1662.6	2053.8	
1-5/8"	-	1996.8	2121.6	2620.8	
1-3/4"	M42	2508.8	2665.6	3292.8	
1-7/8"	-	3096.0	3289.5	4063.5	
2"	M48	3776.0	4012.0	4956.0	
2-1/8"	-	4556.0	4840.8		5410.3
2-1/4"	M56	5414.4	5752.8		6429.6
2-3/8"	-	6399.2	6799.2		7599.1
2-1/2"	M64	7472.0	7939.0		8873.0
2-5/8"	-	8668.8	9210.6		10294.2
2-3/4"	M72	9996.8	10621.6		11871.2
2-7/8"	-	11444.8	12160.1		13590.7
3"	M76	13017.6	13831.2		15458.4

Torque using Cf of 0.16 (783, 772, 787, 900). Add 10% for 725/785. Add 20% for 710.

Torque Charts

Austenitic Torque Wrench Settings (FT-LBS)

Bolt Diameter		B8, B8M, (1 &1D)	B8-2, B8M2	F593G	F593H
Yield Strength		30,000	80,000	65,000	50,000
Tensile Strength		75,000	115,000	105,000	90,000
1/4"	M6	1.9	5.1	4.1	
5/16"	M8	3.9	10.5	8.5	
3/8"	-	7.0	18.6	15.1	
7/16"	M10	11.7	31.2	25.3	
1/2"	M12	18.1	48.3	39.3	
9/16"	M14	26.7	71.3	57.9	
5/8"	M16	37.5	100.0	81.3	
11/16"	-	50.8	135.5		84.7
3/4"	M20	67.1	179.0		111.9
13/16"	-	86.6	230.9		144.3
7/8"	M22	109.4	291.8		182.4
15/16"	-	135.9	362.4		226.5
1"	M24	166.3	360.4*		277.2
1-1/8"	M27	212.8	461.0*		354.6
1-1/4"	M30	333.3	722.2*		555.5
1-3/8"	-	447.5	745.8*		745.8
1-1/2"	M36	586.8	978.0*		978.0
1-5/8"	-	748.8			
1-3/4"	M42	940.8			
1-7/8"	-	1161.0			
2"	M48	1416.0			
2-1/8"	-	1708.5			
2-1/4"	M56	2030.4			
2-3/8"	-	2399.7			
2-1/2"	M64	2802.0			
2-5/8"	-	3250.8			
2-3/4"	M72	3748.8			
2-7/8"	-	4291.8			
3"	M76	4881.6			

Torque using Cf of 0.16 (783, 772, 787, 900). Add 10% for 725/785. Add 20% for 710. *Tensile strength changed at bolt diameters.

GLOBAL SOLUTIONS, LOCAL SERVICE

Since its founding in 1884, A.W. Chesterton Company has successfully met the critical needs of its diverse customer base. Today, as always, customers count on Chesterton solutions to increase equipment reliability, optimize energy consumption, and provide local technical support and service wherever they are in the world.

Chesterton's global capabilities include:

- Servicing plants in over 113 countries
- Global manufacturing operations
- More than 500 Service Centers and Sales Offices worldwide
- Over 1200 trained local Service Specialists and Technicians

Visit our website at chesterton.com

© 2022 A.W. Chesterton Company. ® Registered trademark owned by A.W. Chesterton Company in USA and other countries, unless otherwise noted.

A.W. Chesterton Company, 860 Salem Street, Groveland, MA 01834 USA Telephone: 781-438-7000, Fax: 978-469-6528, chesterton.com

Form No. EN36492 Bolting Quick Reference Pocket Guide - English 08/22